
Historical Data Storage for Large Scale Sensor Networks

Loı̈c Petit

LIG - SIGMA
Grenoble University
220 rue de la Chimie

38400 Saint Martin d’Hères,
France

loic.petit@imag.fr

Abdelhamid Nafaa

Computer Science and
Informatics

University College Dublin
Belfield 4

Dublin, Ireland
nafaa@ieee.org

Raja Jurdak

CSIRO ICT Center
QCAT Technology Court

Pullenvale QLD 4069, Australia
rjurdak@ieee.org

RESUME
Les réseaux de capteurs sans fils sont de plus en plus
déployées pour de nouvelles applications comme la fores-
terie ou l’agriculture de précision, répondant à différents
besoins en termes de surveillance et collecte de données à
distance. Bien que plusieurs travaux de recherche ont cou-
vert le routage de données dans des réseaux de capteurs à
grande échelle, peu de travaux se sont intéressés aux archi-
tectures de stockage sous-jacentes qui souvent constituent
le goulot d’étranglement du fait des accès disques inten-
sifs. Cet article décrit une architecture de stockage et un
accès aux mesures émanant d’un réseau de capteurs sans
fils à très grande échelle. Notre contribution s’articule
autour (i) d’un partitionnement des données couplées a
une méthode originale basée sur un double-buffer pour
réduire le coût en puissance de traitement et réduire les
délais de bout-en-bout et (ii) d’un schéma optimisé pour
les requêtes et l’accès rapide aux mesures sauvegardées.
Nous avons implémenté notre système de sauvegarde,
ainsi que d’autres mécanismes de routage au niveau réseau
des capteurs, dans un prototype disponible au campus
d’UCD. Les résultats d’évaluation de performances ont
été effectués à l’aide d’un émulateur de réseaux de cap-
teurs.

MOTS CLES : capteur, stockage historique, partition-
nement, double-buffer

ABSTRACT
Wireless sensor networks are rapidly finding their way
through a plethora of new applications like precision farm-
ing and forestry, with increasing network scale, system
complexity, and data rate. While scalable MAC and rout-
ing protocols for sensor networks have been well ad-

dressed in recent years, the scalability of the back-end
storage architecture has been largely overlooked. As a
result, current storage and retrieval architectures usually
lead to an excessive I/O cost when it comes to improv-
ing the scalability and responsiveness of the system. In
this paper, we present a scalable backend storage and re-
trieval architecture to support very large volumes of real-
time measurements from wireless sensor networks. In
particular, our contribution provides: (i) a database par-
titioning and structuring scheme coupled with a double-
buffering technique to reduce the end-to-end delay while
minimizing the processing power, and (ii) an optimized
historical measurement data query format tailored for su-
perior performance in terms of data retrieval responsive-
ness. Through a realistic emulator for large scale sensor
network, we evaluate this storage and retrieval system to
illustrates its delay and I/O benefits in both high and low
traffic rate scenarios. The evaluation guides our design
of an adaptive design, that applies batch insert method
for smaller deployments to reduce insertion delay, and
double-buffering for larger deployments to reduce I/O cost
and avoid saturation, at the cost of higher delay.

CATEGORIES AND SUBJECT DESCRIPTORS: H.2.8.
Database Applications - Scientific Databases; D.4.8. Per-
formance - Simulation

GENERAL TERMS: Design, Performance

KEYWORDS: sensor, historical storage, database parti-
tioning, double-buffer

INTRODUCTION
The cost of advanced sensor nodes (motes) is continually
decreasing, rendering large-scale sensor networks deploy-
ment affordable and viable for many use cases such as pre-
cision agriculture. While these recent advances certainly
raise many new opportunities and challenges, existing re-
search has mainly focused on issues related to the scal-
ability of data collection and routing protocols to reduce
traffic overhead and thus increase the power efficiency.

Research on data-centric sensor management falls into



two main directions: streaming data; and historical stor-
age. The streaming data approach considers the sen-
sor nodes as stream producers and accesses data through
query to the network. This approach targets real-time sce-
narios where only recent measurements are important; it
combines real-time measurement aggregation and caching
techniques to improve the performances in terms of re-
sponsiveness and accuracy [14, 18, 19, 13].

The historical storage approach takes the view that all
measurements are valuable for later access and data min-
ing, and consequently relies on centralized back-end stor-
age and retrieval systems. The main challenge here is to
conciliate high responsiveness for measurement queries
with the overall I/O cost of system. There have been sub-
stantial research work on how to treat complex and ex-
pressive queries [5, 10] as sensor networks are scaled up
(e.g., GSN [5]), with the introduction of historical storage
of measurement streams.

Combining the streaming and historical approaches can
provide a back-end system that supports both real-time
streaming and historical data retrieval effectively. How-
ever, in a large-scale context, designing such system
is compromised and no attempts has been done to our
knowledge. To address this issue, this paper proposes a
database design structure that conciliates the responsive-
ness for measurement queries with limited processing re-
sources and the I/O cost resulting from different network
configurations (in terms of number of sensor nodes and
their reporting period) that may put different burdens on
the back-end system. We propose two methods for sup-
porting the wide range of measurement data volumes aris-
ing from different sized deployments: (1) batch insertion,
and (2) double-buffering. The batch insert method con-
sists of grouping the insertion of multiple data records by
delaying the commit; it supports low input rate (low re-
sponsiveness) while ensuring low I/O cost or low insertion
delay. The double-buffering method builds on the work
in [4] by providing two separate buffers for receiving data
from the network and for committing data to the database
simultaneously, which significantly reduces delay over the
batch-insert method. This improves the system processing
capacities and thus greatly increases the data volumes in-
putted in the database.

SUMAC ARCHITECTURE
Our work in this paper is part of the SUMAC project
[11]. The SUMAC project aims at developing an energy-
efficient large scale wireless sensor network that can be
effectively accessed and controlled remotely. A prototype
has been developed and deployed in the campus of Uni-
versity College Dublin. The objective of this project is
twofold: (i) research and design mechanisms and proto-
cols to develop in-network processing capabilities able to
aggregate measurements, react to alerts, change the nodes
behavior. This effort is meant to develop a network mid-
dleware that supports application-aware network adapta-

Figure 1 : The SUMAC Architecture

tions and network-aware application adaptations [12]; and
(ii) a back-end system to enable web-based access and
analysis of historical measurements. This back-end sys-
tem includes all the design protocols and security mech-
anisms to convey the sensor measurement through 3rd
party network; most importantly, it embeds intelligence
to translate high-level policies into sensor network man-
agement procedures. In this paper, we focus on design-
ing and developing a cost-effective storage and retrieval
system able to meet the stringent demand of a large-scale
wireless sensor network.

As illustrated in the Fig. 1, we use a wireless mesh net-
work [17] to bridge together the geographically distant
clusters of sensor networks and cover very large areas
without incurring additional cost associated with wiring
all cluster heads to Internet. The WiFi-based mesh net-
work routes all data to few mesh portals that in turn aggre-
gate and forward the sensor measurements to the back-end
portal.

The SUMAC architecture mainly targets environmental
monitoring. A typical example is vineyards [2], where
the network can gather luminance, moisture, temperature
or any other metric from several fields, and store them for
historical purposes, such as future analysis of the condi-
tions that favors an increase in the productivity. Consider-
ing this architecture, the amount of motes inside one sin-
gle deployment can be significantly high. If we put one
motes every ten meters to have a acceptable precision, we
will have 100 sensors per hectare. This amount will reach
quickly 2000 if we cover a typical vineyard of 20ha. The
large scale support is then essential in such system.

Nowadays, the tendency is to dematerialize everything ; to
store and process data on cloud such as Amazon EC2[1].



In such cloud computing systems, I/O operations, cpu cy-
cles and memory usage cost. Thus, historical storage has
to be optimized for I/O costs, and also for its scalabil-
ity that can be represented as the size of the data input
rate. There are two main approaches used to increase the
scalability of a back-end system: (i) vertical scalability
model that employs caching techniques, content partition-
ing, and other hardware-related techniques to improve the
system serving capabilities, and (ii) horizontal scalability
model that employs a highly-available cluster of comput-
ers where the load entailed by serving VOD services can
be shared among different servers. While a computing
cloud is capable of offering important horizontal scalabil-
ity improvements, vertical scalability is an important de-
sign decision for our historical storage approach in order
to reduce the operational cost.

RELATED WORK

Only few research works focused on efficient storage of
large historical data volumes in sensor networks. How-
ever, historical storage performance has been relatively
well studied by the data warehouse field. The basic con-
cept employed to deal with high load flows is to trade
off the data insertion delay, and thus deteriorate the re-
sponsiveness of the system to later data queries. The
main idea behind this design is to streamline I/O access
by transforming random I/Os into well structured sequen-
tial I/Os. The performance of such systems increases
with the maximum delays constraints, which would fur-
ther limit the responsiveness of the system putting an ex-
cessive lag between the effective data collection at sensor
levels and their availability for real-time analysis. Some
research works[8, 15] have already focused on this kind
of management by combining efficient data structuring
and buffering-driven smooth insertion algorithms. Al-
though our research work falls within this broad research
approach, we consider more strongly the responsiveness
constraint that limits the extent of optimization at inser-
tion level. As a consequence, our system calls for a dy-
namic insertion strategy that adapts to the offered load to
keep an acceptable responsiveness performance.

Another mainstream research approach consists of using
load-shedding[16], involving the reduction and aggregat-
ing of the incoming data stream to reach manageable load
(measurements are averaged before storage). The research
project HiFi[9] uses precisely this approach to accommo-
date measurement storage in sensor networks. This sys-
tem is based on the TelegraphCQ[6] adaptive stream en-
gine that includes a historical storage called OSCAR[7]
which was designed to reduce I/O costs. Several types of
algorithms are proposed in order to adapt the storage pro-
cess to the offered load by using multi-resolutions load-
shedding manipulations on disk. This approach is prob-
ably the best to adapt to the charge but it has the signifi-
cant drawback of trading the measurement resolution for
performances. We take the view that each single measure-

ment generated by a sensor node is valuable for later anal-
ysis and data mining. We believe that much of the cost
should be associated with the actual data collection at the
sensor network level, and any received measurement data
should be stored without reducing the fidelity/resolution
of the measurement.

DATABASE DESIGN
The main objective of the SUMAC research is to achieve
’Scalability’. Yet, it is readily realized that one database
cannot handle measurement data volumes stemming from
several deployments of over 10,000 motes; considering a
fairly low reporting period of 1 minute, the stored data
volumes will be qualified in Terabytes within a year. Our
system design needs to carefully take consider scalabil-
ity factors to meet the challenge by using a hierarchical
design element. In the following sub-sections, we will
first present how we distribute the back-end storage and
retrieval system to support several WSNs deployments;
afterwards, we will see the mote-driven data structure par-
titioning in the DB in order to achieve higher query re-
sponsiveness.

Fragmenting across deployments
As using a single database does not scale well, we adopted
a hierarchical design principle. Our overall storage and
retrieval system is organized as follows:

• A single Master Database (M-DB) that contains infor-
mation common to all deployments, network configu-
rations, and user interface preferences. This is some
sort of metadata DB;

• A Deployment Database (D-DB) for each deployment
that manages a distinct sensor network, and stores all
measurements related to this latter.

The M-DB is also used as a pointer to the different D-
DB to help the receiving server to identify in which D-
DB each measurement stream should stored. It is used
in the same manner to retrieve data for an end-user con-
nected through Internet. This structure has two main ad-
vantages: it is highly scalable because there is no limit on
the number of sensor nodes supported by the system; also,
we replicated the whole system, and assign several D-DB
for a very large WSN deployment.

Partitioning across motes
In this sub-section, we introduce how the measurement
data are stored in the D-DB in such way to maximize the
performances of queries. The D-DB data has been de-
signed to best accommodate the most common queries.

The most frequent queries that are used in monitoring ap-
plications have the following form: Get the XX last read-
ings of mote YY. This means that the D-DB responsiveness
will overly deteriorate with the number of motes being
tracked. To address this we grouped the measurements by
mote using the MoteID identifier to create different tables,
in addition to a global time-stamping to historically nav-



Table 1 : Table schema for each measures xx
Column: timestamp storedTime count raw values
Type: TIMESTAMP TIMESTAMP SMALLINT BIGINT
Indexed: X

igate within the collected measurements. The raw values
column contains a binary version of all the different read-
ings we get on each single mote active in the network. We
use the BIGINT1 in order to keep the disk usage at the
lowest level possible.

A query for the last 20 temperature measurements of mote
42 will translate into the following SQL query:

SELECT sensorValue(values, 1) FROM measures 42
ORDER BY timestamp DESC LIMIT 20

Even with Terabytes of data we can always get the last
readings in less than 100ms thanks to this index organiza-
tion.

DATA INSERTION OPTIMIZATION
The database has been designed to have optimized per-
formances for queries. Admittedly, this design implies
that the places on disks are fragmented as well, requir-
ing much more entry changes during sensor measurement
storage, which limits the storage data rates and the respon-
siveness. In the following, we present and compare two
methods we designed and adapted to have the best perfor-
mances: batch insert method and double-buffer method.
The batch insert method is based on the delayed commit
that has been widely used by researchers and engineers
due to its simplicity. The double-buffer method uses a
double-buffer[4] to adapt the delay to increase the sup-
ported data rate further.

Batch insert method
The natural approach to deal with multiple insert in a
database is to use copy-like[3] instructions; this, however,
leads to insufficient performances in real-time, especially
in the context of multiple spread tables. Unfortunately,
in one sampling period (one second for example) we can
have thousands of tables to modify. Another approach is
to explicitly delay the commit of a constant period, so as to
group together related updates and achieve efficiencies in
terms of I/O. To efficiently perform this we designed two
processes on the MeshServer: the first process receives
sensor measurement packets and buffers them, while the
second process communicates with the database to per-
form I/O operations. To create the delay, the database
empties the buffer at overflow events or upon timeouts
only, which ensures a bounded latency for sensor mea-
surements storage.

This method provides a gain of supported deployment size
from 3 to 4 compared to the conventional sequential stor-
age solution. However, the main limitation resides on the

1BIGINT is a SQL type that is a 64 bits integer

Figure 2 : The double-buffer method

fact that it is not possible to ensure a high storage data
rate. Due to the a-priori memory buffering and the us-
age of insert-like instructions, this method cannot support
much more.

Double-buffer method
The main idea for double-buffering, which targets large
networks, is to delete the two restrictions that arise with
the above method. We first transform the memory buffer
into an adaptable buffer inside a database that can be on
disk. Then, we change this costly insert instruction into a
copy one.

Figure 2 shows the stream line of the data storage manager
with the two main buffers that are tables with the schema
(moteid, timestamp, count, values) with absolutely no in-
dexing. The MeshServer (MS) transfers after analysis
messages to the first buffer while the DatabaseManager
(DBM) performs a bulk insert inside final tables. When
the buffer #2 is empty, the DBM asks exclusive rights to
the buffer #1. When done, the roles are inverted, the DBM
empty the buffer #1 while the MS fills the other and so on.

The bulk insert is done with copy instruction because we
surely get more that one measure per sensor. Therefore
the greater the ratio tuple/table is, the better the usage of
this instruction is optimized. It also avoids buffer over-
flows, as it is written on disk. The next section details the
performance analysis of the two methods we introduced
here, and also discuss which method is more suitable for
a given situation.

PERFORMANCE ANALYSIS
In this section, we will show the benchmark we deployed
and its results. We have tested both methods in the same
machine, on the same conditions in order to be the more
precise possible. We will firstly present the emulator.

A word about the emulator
The emulator tries to reproduce reality by transforming
the deployment, that we can see in the figure 1, into a data
flow producer. It can provide the same behavior as the real
network because it is built with the components from the
mesh layer. Thus we can also simulate the usual MTU
buffering inside the mesh network. Its timeout is con-
figurable to fit with the end-user responsiveness require-
ments.

As to be expected, the offered load at the MeshServer
increases proportionally to the number of motes and in-
versely to the sampling period. The MeshServer handles



Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 MB/s 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 3 : Offered load at the MeshServer

a traffic load of about 0.6 Mbps for a sampling period of
1 second and 2500 motes. While this received data rate
is manageable, the entailed CPU and RAM usage is (see
figure 4 and 5) since the MeshServer process each TCP
packet to retrieve and interpret the encapsulated sensor
packets. We can see the MTU buffering effects on the
in-bandwidth on the MeshServer that we show on figure
3. Even though the increasing is linear in theory, we have
a cut reality.

This emulator has many parameters as the size of deploy-
ments, counted as the total number of motes, the length
of the sampling periods and the MTU buffering timeout.
In order to have the accurate analysis, we deploy the three
servers on one single machine2 and the emulator on an
other3. For the deployment we use a powerful tool called
smartfrog that can deploy each component on whatever
computer. In the real deployment we will also deploy
our servers with this tool as it can interface with Amazon
EC2[1] easily.

The validation of our solution uses the following metrics,
which the emulator gathers via mostly Sun JMX:

• CPU and Memory usage of the MeshServer and of the
maintenance Daemon: part of the usual cloud comput-
ing pricing policy. We need to control this metric to
lower the final cost.
• The Input/Output bandwidth rate: represents data rate

flow in the Internet. If this rate is too high we can
consider splitting the single connection in two.
• Input/Output cost on the storage disk: is a critical indi-

cator of performance, as as we do need to write down
the readings on disk.
• The delay upon insertion which is equals to the differ-

ence between the timestamp upon insertion in the final
tables of the database and the timestamp upon packet
generation. It has an direct impact as the data are
searchable through historical queries only if the data
is inserted in the database.

Having described the emulator parameters, the next sec-
tion presents the simulation results.

2Pentium 4 3.2GHz, 1Go Ram, 2 HDs 5200rpm, PostgreSQL 8.3
3AMD64 2.6GHz, 1Go Ram

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 % 

 0 200 400 600 800 1000

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 5

 10

 15

 20

 25

Figure 4 : Batch insert - MeshServer CPU usage

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 MB 

 0 200 400 600 800 1000

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 10

 20

 30

 40

 50

 60

 70

Figure 5 : Batch insert - MeshServer Memory usage

Batch insertion results
We first tried to test the limit of the system to see what to
plot. We fixed the sampling period to 1s and then looked
for the number of motes that made the system faulty4.

To test the performance boundary of the historical storage
system for a single deployment, we estimate that the limit
on node membership is between 1000 and 1200 motes
within a single deployment. Considering this limit, we
have generated 60 test points, 15 on the number of motes
axis and 4 on the sampling period one. As previous ex-
periments have demonstrated, we have decided to have a
quadratic repartition of those points in order to fit best the
curves. Every metrics has been computed by doing the
average among the time while being stable. The stable
situation is declared after the table creation and a first in-
sert has been done in the table. For this method, we will
describe the plots with the ranges of [25-1000] motes and
[1-60] seconds as sampling period.

A first significant result is the linear evolution of the CPU
usage of the MeshServer, as shown in Figure 4. This com-
puting time is spent mostly on dispatching each packet to
the correct table. Even though we provide a cache solution
based on hash tables to do a fast answer to this query, we
still have a linear evolution. Unfortunately we have a high
computational power needed: over 20% for 1000 motes.

The memory-usage represented in figure 5 is an exponen-
tial metric. Storing a useful cache as well as the temporary

4We can measure if the configuration is not supported by looking at
the shape of the plot timestamp→ delay upon insertion



Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 Op/s 

 0 200 400 600 800 1000

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 10

 20

 30

 40

 50

 60

 70

Figure 6 : Batch insert - I/O Write rate

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 ms 

 0 200 400 600 800 1000

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Figure 7 : Batch insert - Delay upon insertion

buffers increases memory costs. Even though the stack
memory stays under 12MB, the heap can rise to 70MB.
Because the cost of memory is comparatively cheap, op-
timizing memory usage is not our priority. In order to
have a limited consumption, we implemented solutions of
cross-deployment synchronization to empty the buffers ef-
fectively.

Between an elementary write command and the physical
hard drive, there is always a cache solution in order to re-
duce frequent disk access. For instance, if we want to read
5 times in the same sector, we will read only once in the
physical disk and hit the cache 4 times. A read operation
in this method is not directly called. But the computation
of the indexes needs reading in order to scan the index
tree. The emulator shows us that almost no reading opera-
tions are performed as we almost hit every time this cache,
ensuring low dependence on I/O read rate.

Considering figure 6, the I/O write rate suits an expo-
nential curve that reaches the maximum (∼700op/s) of
the hardware on 1200 motes. Fortunately, the I/O cost is
still pretty low for our requirements. We can here store a
stream of 1000 motes that samples every second with only
60 operations per second. But as the evolution explodes
exponentially it will be our limiting metric.

Figure 7 plots the measured delay upon insertion. As ex-
pected, the delay that remains between 0 and 11s, due to
the MTU timeout (10s) and the batch timeout (1s). We can
then correlate this figure with Figure 3, where both figures
exhibit minima for the same configurations. An interest-

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 Op/s 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 2

 4

 6

 8

 10

 12

 14

 16

Figure 8 : Double-buffer - I/O Read rate

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 Op/s 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 100

 200

 300

 400

 500

 600

 700

Figure 9 : Double-buffer - I/O Write rate

ing result is that the delay is independent of the sampling
period.

In summary, the Batch insert method provides low cost for
every metrics. However, it only supports smaller deploy-
ments of up to 1000 motes, which may quickly become
a problem for deployments of scale. The second method
in our design, the Double Buffer, aims at increasing the
supported network scale at the cost of higher delay.

Double-buffer results
As before, we tested the limit of the system for a sam-
pling period of 1s. We got a bound between 4000 and
4500 motes, which is already a huge evolution compared
to before. We have indeed here a better performance with
a ratio of 4 ∼ 5 over the deployment size.

Considering this limit, we vary the number of motes be-
tween 100 and 2500, considering four sampling periods
as above. For performance issue and a better cache usage,
we decided to put the buffer on one disk and the storage
on an other.

We can see in figure 8 that the read rate stays low as the
data flows in a regular rate. But when high rates are com-
ing, the cache is not enough big and we have to swap to
disk in a sequential order. Fortunately, this cost is insignif-
icant compared to writing in an index input.

Figure 9 illustrates that even though the global range of
delay values is higher than in the previous method, the
double-buffer method is more scalable. Saturation occurs
at the hard-disk capacity in a linear progression until 1000



Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 ms 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Figure 10 : Double-buffer - Delay

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 % 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 0

 2

 4

 6

 8

 10

 12

Figure 11 : Double-buffer - maintenance CPU usage

motes. Adding more nodes does not increase the cost any
further. We can indeed support higher data rates with the
same write rate. This double-buffer manipulation has the
property to adapt itself to the charge it will take more time
to do the flush with the same cost. If the load is too high,
it takes more time to perform its operations. Therefore the
current delay is increased and a the ratio tuple/table will
rise on the next buffer switch, which will significantly help
the bulk insert.

The double-buffer method thus trades off delay for scala-
bility. Figure 10 shows the trend of this tradeoff. Here we
can see that for high rates, we have a delay that can reach
18s. An important result is that the evolution seems to be
linear. The delay we had in a deployment of 4000 motes
is around 60s, so it scales well.

Figure 11 represents the evolution of the CPU usage on the
maintenance process. We have seen in our measures that
the MeshServer is not a bottleneck, as it only inserts into
buffers so it is not displayed here. The maintenance (down
in the first method) consumes a lot of power if the ratio tu-
ple/table is low, we will use more resources to switch be-
tween tables. Therefore, we can see that the cost increases
first, then stabilizes, and finally decreases.

Similarly, the figure 12 show the evolution of the memory
consumption of the maintenance. Here we can see that
we best control the memory pool. In this figure, we can
see a logarithmic curve. The arguments on the CPU still
remains, the better the ratio is, the less we use resources.

Number of motes
Sam

pli
ng

 pe
rio

d (
ms)

 MB 

 0
 500

 1000
 1500

 2000
 2500

 0
 10000

 20000
 30000

 40000
 50000

 60000

 2

 4

 6

 8

 10

 12

 14

Figure 12 : Double-buffer - maintenance memory usage

Batch insert Double-buffer
Total CPU < 25% < 20%
evolution O(t) ∼ O(1)
Total Memory < 70MB < 50MB
evolution O(eKt) O(t)
Write rate < 100op/s max(700op/s)
evolution O(eKt) O(1)
Read rate None > 10op/s
evolution O(eKt)
Delay < 11s > 10s
evolution O(1) O(t)
Max motes 1000-1200 4000-4500

Table 2 : Performance comparison

Method comparison

Both double-buffering and batch insert methods provide
advantages and drawbacks, sometimes crucial. We need
to separate the needs for every possible value of sampling
period and number of motes. In order to identify the ideal
method for each scenario, we need to split our domain of
value between large and normal rates. We defines normal
as: supported by the batch insert method. Higher rates
have more stringent performance requirements which the
batch insert method cannot handle.

In the batch insert method, we have correct overall per-
formance for normal rates. We can ensure low I/O costs,
fair CPU and memory usage, as well as a reasonable de-
lay upon insertion. Therefore, we can choose this method
for scenario that require low global cost. Unfortunately,
due to its exponential explosion of the memory usage and
the I/O cost, the batch insert method cannot support large
rates.

On the other hand, the double-buffer method supports
higher rates. Considering its capacity to auto-adapt to
load, its behavior is controllable and does not saturate.
Unfortunately, low rates are well supported but spawn a
lot of I/O operations. The lowest recommended rate for
this double-buffer method is the highest stable rate in the
batch insert method.

Table 2 summarizes the different metrics and their evo-



lution5 for a sampling period of 1 second. We can now
easily see the ideal choice of method is highly scenario-
specific. Moreover, this choice can easily change accord-
ing to dynamic network membership.

Our software design can adapt methods in real-time. If
a rate is lower than a certain bound (to be determined of-
fline), the system uses the batch insert method. Otherwise,
it switches to the double-buffer method. We demonstrate
the use of this functionality through a practical scenario:
a wine-grower owns 2 fields with 200 motes sampling at
1s. Our system is on the batch insert method by default.
After some months, the wine-grower acquires 4 vineyards
and instruments them. We have now progressively 800
motes that are joining the network. Our system can au-
tonomously detect changes in the number of motes in each
deployment and switch to the double-buffer method as the
total number of nodes approaches 1000. The system exe-
cutes this process automatically without any intervention
or even awareness from the farmer, or more generally, the
network operator.

CONCLUSION AND FUTURE WORK
In this paper, we introduced a new design for a storage
and retrieval back-end system tailored to meet the require-
ments of a large-scale wireless sensor network. The ob-
jective is to build a cost-effective system with acceptable
responsiveness characteristics to support real-time moni-
toring. The database has been structured with adapted data
organization to meet the very specific pattern of measure-
ment queries that are typical of sensor networks applica-
tions. Due to this particular design and the entailed per-
formance requirements, we further investigated original
optimizations to process large data volumes of measure-
ments in real-time basis. We adapted the double-buffer
technique to our system and show that the gain in per-
formances is considerable. We evaluated the performance
of our system through prototyping in our testbed. We ar-
gue that this technique may be fitted for any system that
requires a large repartition over an important number of
spread tables. It also provides further opportunities to de-
sign analytical models to compute the final cost consider-
ing on the cloud computing rates and the deployment size.

ACKNOWLEDGEMENTS
We would like to thank Olivier Pernet, who has designed
the emulator as well as most of the software architecture.

BIBLIOGRAPHIE
1. Amazon elastic cloud computing.

http://aws.amazon.com/ec2/.

2. Camilie networks, wireless sensing for viticulture.
http://www.camalienetworks.com/.

3. Postgresql 8.3 reference : Copy.
http://www.postgresql.org/docs/8.3/static/sql-
copy.html.

5K is an undetermined constant

4. Wikipedia article - double buffering.
http://en.wikipedia.org/wiki/Double buffering.

5. Aberer, K., Hauswirth, M., and Salehi, A. Infrastruc-
ture for data processing in large-scale interconnected
sensor networks. pages 198–205, 2007.

6. Chandrasekaran, S., Cooper, O., and Deshpande, A.
Telegraphcq: Continuous dataflow processing for an
uncertain world. CIDR ’03, Jan 2003.

7. Chandrasekaran, S., and Franklin, M. J. Remem-
brance of streams past: overload-sensitive manage-
ment of archived streams. VLDB ’04, Jan 2004.

8. Chaudhuri, S., and Dayal, U. An overview of data
warehousing and olap technology. SIGMOD ’97, Jan
1997.

9. Franklin, M. J., Jeffery, S. R., Krishnamurthy, S.,
and Reiss, F. Design considerations for high fan-in
systems: The hifi approach. CIDR ’05, Jan 2005.

10. Gurgen, L., Labbé, C., Bottaro, A., and Olive, V.
Sstreamware: a service oriented middleware for het-
erogeneous sensor data management. ICPS ’08, Jan
2008.

11. Jurdak, R., Nafaa, A., and Barbirato, A. Large
scale environmental monitoring through integration
of sensor and mesh networks. MDPI Sensors, 2008.

12. Jurdak, R., Ruzzelli, A. G., Barbirato, A., and
Boivineau, S. Octopus: Modular visualization and
control for sensor networks. Wiley Wireless Commu-
nications and Mobile Computing, 2009.

13. Madden, S. R., Franklin, M. J., Hellerstein, J. M.,
and Hong, W. Tag: a tiny aggregation service for
ad-hoc sensor networks. OSDI 2002, 2002.

14. Madden, S. R., Franklin, M. J., Hellerstein, J. M.,
and Hong, W. Tinydb: an acquisitional query pro-
cessing system for sensor networks. TODS ’05,
30(1):122–173, 2005.

15. Muth, P., O’Neil, P., Pick, A., and Weikum, G. De-
sign, implementation, and performance of the lham
log-structured history data access method. VLDB
’98, Aug 1998.

16. Tatbul, N., Çetintemel, U., Zdonik, S., and Cherni-
ack, M. Load shedding on data streams. MPDS ’03,
Jan 2003.

17. Union, E. Carrier grade mesh networks (carmen).
Misc, Project Reference: 214994., 2007.

18. Yao, Y., and Gehrke, J. The cougar approach to in-
network query processing in sensor networks. SIG-
MOD ’02, 31(3):9–18, 2002.

19. Yao, Y., and Gehrke, J. Query processing in sensor
networks. CIDR ’03, Jan 2003.


	INTRODUCTION
	SUMAC ARCHITECTURE
	RELATED WORK
	DATABASE DESIGN
	Fragmenting across deployments
	Partitioning across motes

	DATA INSERTION OPTIMIZATION
	Batch insert method
	Double-buffer method

	PERFORMANCE ANALYSIS
	A word about the emulator
	Batch insertion results
	Double-buffer results
	Method comparison

	CONCLUSION AND FUTURE WORK

